SM223 – Calculus III with Optimization Assoc. Prof. Nelson Uhan

Lesson 4. The Dot Product, cont.

1 Warm up

Example 1. Consider the triangle with vertices P(2, 0), Q(0, 3) and R(3, 4).

- a. Find \overrightarrow{PQ} (the vector starting at *P* and ending at *Q*), \overrightarrow{QR} and \overrightarrow{PR} .
- b. Find the angle $\angle PQR$.

2 Today...

- Projections
- Practice with vectors and dot products

3 **Projections**

• Vector projection of \vec{b} onto \vec{a} :

- Denoted by $\operatorname{proj}_{\vec{a}}\vec{b}$
- $\circ~$ "Shadow" of \vec{b} onto \vec{a}

- Scalar projection of \vec{b} onto \vec{a} = signed magnitude of $\text{proj}_{\vec{a}}\vec{b}$
 - Also called the **component** of \vec{b} along \vec{a}
 - Denoted by $\operatorname{comp}_{\vec{a}}\vec{b}$
- The scalar and vector projections can be computed using dot products:

Example 2. Find the scalar projection and vector projection of $\vec{b} = \langle 3, 4 \rangle$ onto $\vec{a} = \langle 2, 1 \rangle$.

Example 3. Draw \vec{a} , \vec{b} , and $\text{proj}_{\vec{a}}\vec{b}$ from Example 2. Is the drawing what you expected?

	***********				 		 5
5							 e.

4 Practice!

Example 4. Find the scalar projection and vector projection of $\vec{b} = \langle 1, 1, 2 \rangle$ onto $\vec{a} = \langle -2, 3, 1 \rangle$.

Example 5. Find a unit vector that is orthogonal to both (2, 0, -1) and (0, 1, -1).

Example 6. Determine whether the given vectors are orthogonal, parallel, or neither:

a. $\vec{a} = \langle 4, 5, -2 \rangle, \vec{b} = \langle 3, -1, 5 \rangle$ b. $\vec{u} = 9\vec{i} - 6\vec{j} + 3\vec{k}, \vec{v} = -6\vec{i} + 4\vec{j} - 2\vec{k}$