Lesson 4. The Dot Product, cont.

1 Warm up

Example 1. Consider the triangle with vertices $P(2,0), Q(0,3)$ and $R(3,4)$.
a. Find $\overrightarrow{P Q}$ (the vector starting at P and ending at Q), $\overrightarrow{Q R}$ and $\overrightarrow{P R}$.
b. Find the angle $\angle P Q R$.

2 Today...

- Projections
- Practice with vectors and dot products

3 Projections

- Vector projection of \vec{b} onto \vec{a} :

- Denoted by $\operatorname{proj}_{\vec{a}} \vec{b}$
- "Shadow" of \vec{b} onto \vec{a}
- Scalar projection of \vec{b} onto $\vec{a}=$ signed magnitude of $\operatorname{proj}_{\vec{a}} \vec{b}$
- Also called the component of \vec{b} along \vec{a}
- Denoted by comp $_{\vec{a}} \vec{b}$
- The scalar and vector projections can be computed using dot products:
- $\operatorname{comp}_{\vec{a}} \vec{b}=$
- $\operatorname{proj}_{\vec{a}} \vec{b}=$

Example 2. Find the scalar projection and vector projection of $\vec{b}=\langle 3,4\rangle$ onto $\vec{a}=\langle 2,1\rangle$.

Example 3. Draw \vec{a}, \vec{b}, and $\operatorname{proj}_{\vec{a}} \vec{b}$ from Example 2. Is the drawing what you expected?

4 Practice!

Example 4. Find the scalar projection and vector projection of $\vec{b}=\langle 1,1,2\rangle$ onto $\vec{a}=\langle-2,3,1\rangle$.

Example 5. Find a unit vector that is orthogonal to both $\langle 2,0,-1\rangle$ and $\langle 0,1,-1\rangle$.

Example 6. Determine whether the given vectors are orthogonal, parallel, or neither:
a. $\vec{a}=\langle 4,5,-2\rangle, \vec{b}=\langle 3,-1,5\rangle$
b. $\vec{u}=9 \vec{i}-6 \vec{j}+3 \vec{k}, \vec{v}=-6 \vec{i}+4 \vec{j}-2 \vec{k}$

